Acetabular shell deformation as a function of shell stiffness and bone strength.
نویسندگان
چکیده
Press-fit acetabular shells used for hip replacement rely upon an interference fit with the bone to provide initial stability. This process may result in deformation of the shell. This study aimed to model shell deformation as a process of shell stiffness and bone strength. A cohort of 32 shells with two different wall thicknesses (3 and 4 mm) and 10 different shell sizes (44- to 62-mm outer diameter) were implanted into eight cadavers. Shell deformation was then measured in the cadavers using a previously validated ATOS Triple Scan III optical system. The shell-bone interface was then considered as a spring system according to Hooke's law and from this the force exerted on the shell by the bone was calculated using a combined stiffness consisting of the measured shell stiffness and a calculated bone stiffness. The median radial stiffness for the 3-mm wall thickness was 4192 N/mm (range, 2920-6257 N/mm), while for the 4-mm wall thickness the median was 9633 N/mm (range, 6875-14,341 N/mm). The median deformation was 48 µm (range, 3-187 µm), while the median force was 256 N (range, 26-916 N). No statistically significant correlation was found between shell stiffness and deformation. Deformation was also found to be not fully symmetric (centres 180° apart), with a median angle discrepancy of 11.5° between the two maximum positive points of deformation. Further work is still required to understand how the bone influences acetabular shell deformation.
منابع مشابه
Do thin acetabular shells increase the disassociation risk of ceramic liners?
This study suggests that contemporary modular acetabular shell designs employing ceramic liners deform during implantation where acetabular bed under-reaming is employed. The liner retention strength did not degrade by comparison to non-deformed shells using ASTM static push-out methods. A larger question, however, is the influence of this deformation on liner retention strength over time when ...
متن کاملThe influence of the strength of bone on the deformation of acetabular shells
Concerns have been raised that deformation of acetabular shells may disrupt the assembly process of modular prostheses. In this study we aimed to examine the effect that the strength of bone has on the amount of deformation of the acetabular shell. The hypothesis was that stronger bone would result in greater deformation. A total of 17 acetabular shells were inserted into the acetabula of eight...
متن کاملFree Vibration of Functionally Graded Cylindrical Shell Panel With and Without a Cutout
The free vibration analysis of the functionally graded cylindrical shell panels with and without cutout is carried out using the finite element method based on a higher-order shear deformation theory. A higher-order theory is used to properly account for transverse shear deformation. An eight noded degenerated isoparametric shell element with nine degrees of freedom at each node is considered....
متن کاملقالب جزء محدود پوسته استوانه ای
Curls and curves of a shell interweave its various strain modes and link them together. This interactional behavior has yet frustrated all attempts for the construction of shell templates, which needs for an individual element test in traditional approaches. Such a test fails to work for shell elements and must be reconstructed. In this paper, it is tried to study shell interactional behavior a...
متن کاملImpaction of a typical press-fit modular acetabular cup using a dynamic finite element method: The effect of cup oversizing and
INTRODUCTION In cementless hip arthroplasty fixation of acetabular cups is often achieved using a press-fit between the cup and the bone, where the acetabulum is typically under-reamed by 1-4mm [1-4] with respect to the size of the cup. Deformation of the cups during insertion remains a concern as it could lead to changes in the clearance and sphericity of the bearing, which can adversely affec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
دوره 230 4 شماره
صفحات -
تاریخ انتشار 2016